SPIE Asia-Pacific Remote Sensing 2010, Incheon, Korea
A. Enokuchi, N. Takeyama(Genesia Corporation),
Y.Nakamura(AXELSPACE Corporation),
Y. Nojiri(Next-generation Space Systems Technology Research Association),
N. Miyamura, A. Iwasaki(Research Center for Advanced Science and Technology, The University of Tokyo),
S.Nakasuka(Dept. of Aeronautics and Astronautics, The University of Tokyo)
Remote sensing missions have been conventionally performed by using satellite-onboard optical sensors with extraordinarily high reliability, on huge satellites. On the other hand, small satellites for remote-sensing missions have recently been developed intensely and operated all over the world. This paper gives a Japanese concept of the development of nano-satellites(10kg to 50kg) based on "Hodoyoshi" (Japanese word for "reasonable") reliability engineering aiming at cost-effective design of optical sensors, buses and satellites. The concept is named as "Hodoyoshi" concept. We focus on the philosophy and the key features of the concept. These are conveniently applicable to the development of optical sensors on nano-satellites. As major advantages, the optical sensors based on the "Hodoyoshi" concept are "flexible" in terms of selectability of wavelength bands, adaptability to the required ground sample distance, and optimal performance under a wide range of environmental temperatures. The first and second features mentioned above can be realized by dividing the functions of the optical sensor into modularized functional groups reasonably. The third feature becomes possible by adopting the athermal and apochromatic optics design. By utilizing these features, the development of the optical sensors become possible without exact information on the launcher or the orbit. Furthermore, this philosophy leads to truly quick delivery of nano-satellites for remote-sensing missions. On the basis of the concept, we are now developing nano-satellite technologies and five nano-satellites to realize the concept in a four-year-long governmentally funded project. In this paper, the specification of the optical sensor on the first satellite is also reported.